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Abstract. Representations of the canonical and deformed commutation relations by bounded
operators onp-adic Banach spaces are constructed. Functions from the Mahler basis of the
space ofp-adic continuous functions and their multiplicative analogues are shown to be the
p-adic counterparts of the Hermite andq-Hermite functions. The analogue of the Stone–von
Neumann uniqueness theorem fails in thep-adic case.

It is well known that no bounded operatorsA, B on a Hilbert space may satisfy the
commutation relation [A, B] = I (see, e.g., [1]). The unbounded irreducible representation
of this relation (understood in a proper way) is unique up to unitary equivalence within
reasonable classes of operators and constitutes one of the main building blocks of quantum
mechanics and quantum field theory.

In this paper we show that ap-adic version of this problem possesses quite different
features. Note that most of the recent concepts of thep-adic quantum mechanics [2–5] deal
with complex-valued wave functions ofp-adic arguments, and hence with conventional
Hilbert spaces. The problem under consideration arises in quantum mechanics withp-
adic valued wavefunctions initiated in [6, 7], and its deeper understanding will hopefully
contribute to further development ofp-adic methods in physics.

Let p be a prime number,Qp the field ofp-adic numbers,Zp the ring ofp-adic integers
(here and below we use standard notions and notations ofp-adic analysis; see, e.g., [2, 8]).
Denote byC(Zp, Qp) the Banach space of continuous functions onZp with values inQp

equipped with sup-norm. The sequence of functions

Pn(x) = x(x − 1) · · · (x − n + 1)

n!
n > 1 P0(x) ≡ 1

forms an orthonormal basis ofC(Zp, Qp) [9, 10]. This means that every function
f ∈ C(Zp, Qp) admits a unique uniformly convergent expansion

f (x) =
∞∑

n=0

cnPn(x) cn ∈ Qp

with |cn|p → 0, and‖f ‖ = supn |cn|p. Here | · |p denotes the absolute value of ap-adic
number.

Let us consider onC(Zp, Qp) the operators

(a+f )(x) = xf (x − 1) (a−f )(x) = f (x + 1) − f (x) x ∈ Zp . (1)
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It follows from the non-Archimedean property of the absolute value and the norm thata±

are defined correctly and‖a±‖ 6 1. Calculating the commutator we easily find that

[a−, a+] = I . (2)

Simple calculations also show that

a−Pn = Pn−1 n > 1 a−P0 = 0

a+Pn = (n + 1)Pn+1 n > 0

so thata± are clear analogues of the creation and annihilation operators. Next, putting
H = a+a− so that

Hf (x) = x{f (x) − f (x − 1)}
we come to an operator with the properties

HPn = nPn n > 0
[
H, a±] = ±a± .

Note that although the operatorH has a complete system of eigenvectors and its point
spectrum coincides with the setZ+ of non-negative integers, the whole spectrum ofH

equalsZp, that is the closure ofZ+ in Qp.
The density ofZ+ in Zp implies also that the kernel ofa− consists of constant functions.

Using this fact and the standard argument from, e.g., [11], we find thata−, a+ form an
irreducible couple.

Every Banach space overQp having an infinite countable orthonormal basis is
isomorphic toC(Zp, Qp). Thus thep-adic analogue of the harmonic oscillator Hamiltonian
constructed in [6] as a result of a complicated integration theory is in fact equivalent to our
much simpler model (since both operators possess orthonormal eigenbases with the same
eigenvalues).

It is also not difficult to compute the operatora−a+. In particular,a−a+Pn = (n+1)Pn,
so that{Pn} is an orthonormal eigenbasis ofa−a+.

A small modification of the above construction shows the non-uniqueness of our
representation. Namely, let us take instead ofa− the operator

(a′f )(x) = f (x + 1)

so thata′ = a− + I . Of course, [a′, a+] = I . Consider the operatorH ′ = a+a′. We have
(H ′f )(x) = xf (x) so thatH ′ has no eigenvectors inC(Zp, Qp) and is not equivalent to
H in any reasonable sense.

The problem of the complete characterization of irreducible representations remains
open. Its solution will probably require further development ofp-adic spectral theory [12].

The basis{Pn} called the Mahler basis plays a significant role inp-adic analysis.
Other objects related to the representation (1) are also well known. For example, the
coherent states (eigenfunctions of the annihilation operatora−) are precisely the functions
fλ(x) = (1 + λ)x, x ∈ Zp, where |λ|p < 1. The proof of this fact immediately follows
from the results of [10] where the definition of the functionfλ can also be found.

Another example is a version of the Bargmann–Fock representation realized in the
Banach space of power series

ϕ(z) =
∞∑

n=0

ϕnz
n z ∈ Zp (3)
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with coefficientsϕn ∈ Qp, |ϕn|p → 0, and the norm‖ϕ‖ = supn |ϕn|p (see [10]). As usual,
we may set

(b−ϕ)(z) = ϕ′(z) (b+ϕ)(z) = zϕ(z)

with [b−, b+] = I . Note that in contrast to the classical situation the power series (3) are
not necessarily entire functions; they have to be defined only onZp. Some other versions
of a p-adic Bargmann–Fock representation have been given in [13, 14].

Now let us turn to the deformed commutation relation

a−
q a+

q − qa+
q a−

q = I (4)

whereq ∈ Qp, |q|p = 1, qN 6= 1 for anyN ∈ Z. In purely algebraic terms such a relation
over an arbitrary field was studied in [15]. We are interested in constructing a representation
of (4) by bounded operators on ap-adic Banach space.

Let Gq be a closure of the multiplicative cyclic subgroup of the ringZp generated byq.
The sequence{q−n, n > 0} is dense inGq [16]. The explicit description ofGq for some
special cases is given in [10]. For example, ifp 6= 2, |q − 1|p = p−1, thenGq = 1+pZp.

Denote byC(Gq, Qp) the Banach space of all continuous functions onGq with values
in Qp. An orthonormal basis of this space may be constructed as follows [10]:

P (q)
n (x) = R

(q)
n (x)

R
(q)
n (q−n)

n > 1 P
(q)

0 (x) ≡ 1 (5)

where

R(q)
n (x) = (x − 1)(x − q−1) · · · (x − q−n+1) n > 1 .

A representation of relation (4) by bounded operators onC(Gq, Qp) is given by(
a+

q f
)
)(x) = (x − 1)f (qx)

(6)(
a−

q f
)
(x) = q(1 − q)−1x−1{f (q−1x) − f (x)} .

Calculating the action of the operators (6) upon the basis (5) we find that

a+
q P (q)

n = (q−n−1 − 1)P
(q)

n+1 a−
q P (q)

n = qn(1 − q)−1P
(q)

n−1(
a−

q a+
q

)
P (q)

n = (qn + qn−1 + · · · + 1)P (q)
n n > 1 a−

q a+
q P

(q)

0 = P
(q)

0

so that
{
P

(q)
n

}
is an orthonormal eigenbasis for the operatora−

q a+
q .

If we introduce an operatorNq by the relationNqP
(q)
n = nP

(q)
n (‖Nq‖ 6 1 since

|n|p 6 1) we find that[
N, a±

q

] = ±a±
q .

Thus we have obtained ap-adic version of the deformed oscillator algebra (see, e.g., [17];
for some related work in thep-adic setting see [18, 19]).
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Just as in the conventional quantum mechanics, the existence of a ‘vacuum vector’ (like
P0 or P

(q)

0 ) and the assumption of a ‘Hermitian’ property of the operatora−a+ (a−
q a+

q )
imply the essential features ofp-adic representations.

Suppose thata±
q are bounded operators on ap-adic Banach spaceE satisfying relation

(4) with q ∈ Qp (here we do not exclude the caseq = 1). Assume thata−
q ϕ0 = 0 for some

ϕ0 ∈ E, and that the eigenvectors corresponding to different eigenvalues ofa−
q a+

q (if they
exist) are orthogonal (in thep-adic sense). By the induction argument we have

a−
q

(
a+

q

)m − qm
(
a+

q

)m
a−

q = (qm−1 + qm−2 + · · · + 1)
(
a+

q

)m−1
m > 1 . (7)

If the couplea±
q is irreducible then it follows from (7) that the vectors

(
a+

q

)m−1
ϕ0, m =

1, 2, . . . , form an orthogonal eigenbasis of the operatora−
q a+

q in E. The corresponding
eigenvalues areqm−1 + qm−2 + · · · + 1 so that necessarily|q|p 6 1. After a suitable
renormalization we obtain the expressions for the action of the operatorsa±

q upon the basis
vectors similar to those found above for our function space representations.
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